A. Guamei, M. Al-Rakhami, M. Mehedi Hassan, V. Hugo C. de Alburquerque, D. Camacho. “An Effective Approach for Rumor Detection of Arabic Tweets Using eXtreme Gradient Boosting Method”. Transactions on Asian and Low-Resource Language Information Processing. In Press, April 2021.
Huertas-Tato, Javier, Alejandro Martín, and David Camacho. “SILT: Efficient transformer training for inter-lingual inference.” arXiv preprint arXiv:2103.09635 (2021). Under evaluation at Expert Systems With Applications journal.
Huertas-García, Á., Martín, A., Huertas-Tato, J., & Camacho, D. (2021). “Profiling Hate Speech Spreaders on Twitter: Transformers and Mixed Pooling”. In CLEF 2021
Huertas-García, Á., Huertas-Tato, J., Martín, A., & Camacho, D. (2021). “CIVIC-UPM at CheckThat! 2021: integration of transformers in misinformation detection and topic classification. In CLEF 2021”
Villar-Rodríguez, G., Huertas-Tato, J., Martín, A. & Camacho, D. (2021, September). “A la desinformación le gusta la compañía: Representación de bulos de Twitter sobre la COVID-19 mediante embeddings”. In XIX Conference of the Spanish Association for Artificial Intelligence(pp. 523-528). 978-84-09-30514-8
Huertas-García, A., Martín, A., Huertas-Tato, J. & Camacho, D. (2021, September). “Evaluación de modelos multilingües pre-entrenados en similitud semántica para la lucha contra la desinformación”. In XIX Conference of the Spanish Association for Artificial Intelligence(pp. 523-528). 978-84-09-30514-8
Martín, A., Huertas-Tato, J., Huertas-García, Á., Villar-Rodríguez, G., & Camacho, D. (2021). FacTeR-Check: Semi-automated fact-checking through Semantic Similarity and Natural Language Inference. arXiv preprint arXiv:2110.14532.